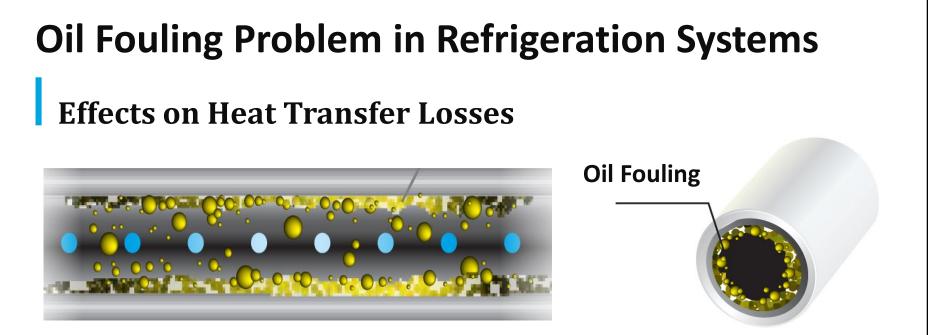


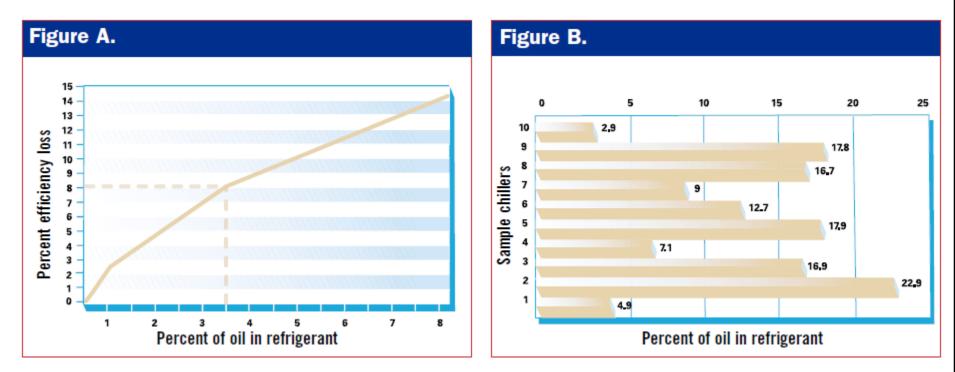
Polarized Refrigerant Oil Supplement Products


For Air Conditioning and Refrigeration Compressors

PROA Technology for Energy Saving improvement

Frigi-Tech History

- Established in 1980's by Clarence Adams (C.D.) with Rice University's professor developing additive to extend the life of Air Conditioning Compressors.
- During the testing, there was a significant reduction of total KWH noticed.
- 1990's : Frigi-Tech changed from preventative maintenance with energy savings being a side benefit, to the main benefit being reduced KWH consumption with a preventative maintenance side benefit.
- 2002 : Frigi-Tech enhance formula for compatible with all of newly Refrigerants.
- Frigi-Tech have expanded international sales over 50 countries.
- Frigi-Tech is backed by 2 Million USD international liability insurance policy that has never experienced a claim filed against.


Oil fouling that impedes HVAC system operation and makes compressors work harder, causing higher kilowatt usage.

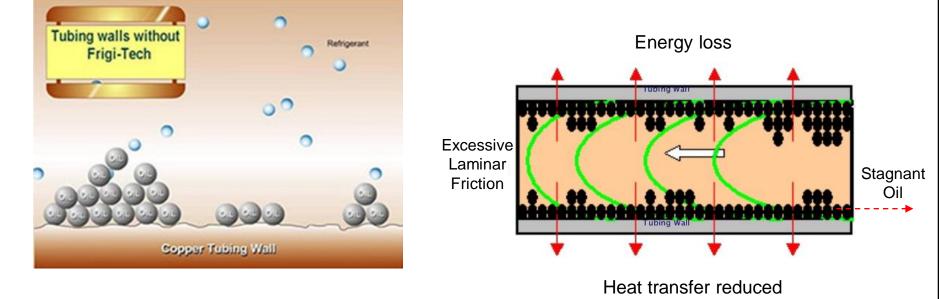
- 7% Loss after the 1st Year
- 5% after the 2nd Year
- 2% each additional Year

Usually the efficiency degradation will peak between 20 % - 30% (ASHARE Handbook published)

High Cost of Chiller Oil Fouling

Failure to control excessive Oil deposit in Chiller's refrigerant will impact Chiller Capacity and Efficiency

Impact of Oil content in Refrigerant in terms of Efficiency loss

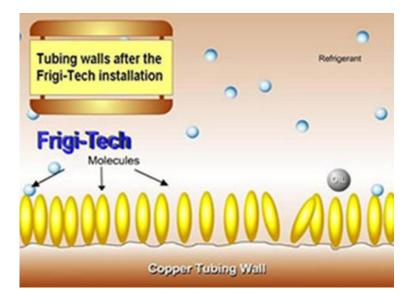

Oil content as a percentage of refrigerant in 10 older CFC-11 Chillers

Existing problem in Refrigeration system

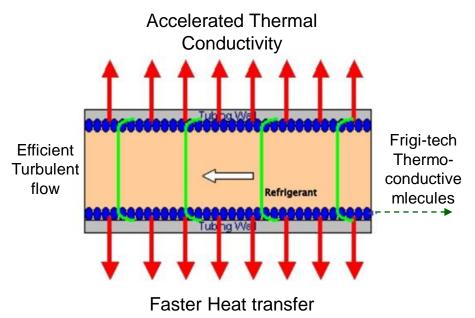
Oil Fouling effect

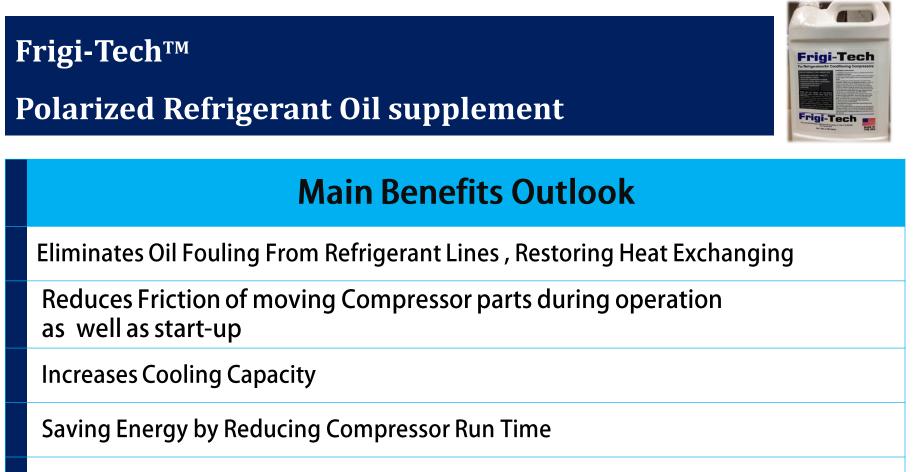
Oil fouling that impedes HVAC system operation and makes compressors work harder, causing higher kilowatt usage.

- X This barrier reduce the Heat transfer inside the Refrigerant circuit
- X Increase the Energy consumption (kwh)



How Frigi-Tech solve the problem


After treatment with Frigi-Tech


Frigi-Tech's polarized molecules bond to the metal inside the system, preventing the insulating build-up of oil which occurs over time due to oil fouling.

√ Oil barrier is completely

and permanently removed

Quiets the decibel of Compressor noise during operation.

Extending Life of Parts, Bearings and Seals, relief from Service issues.

Only One Treatment necessary

Frigi-Tech will restore the efficiency in the Condenser and Evaporator coils by "restoring the Heat exchange"

Frigi-Tech Product # Identification

TYPICAL BLENDS OF FRIGI-TECH™

FRIGI-TECH™ P	roducts Types
----------------------	---------------

Common Refrigerants

Mineral Oil Blend	CFC'S
Polyoester Oil Blend	HFC'S
Alkylbenzene Oil Blend	HCFC'S
Low Temp Oil Blend	Ammonia
PAG Oil Blend	Automotive
Custom Blend	Blended to be an exact match to customers brand of oil

Frigi-Tech Product component

1. Anti-Ware additive (A) Contact activate additive & B) Friction activate additive) Bond to metal surface and protect against damage during Hydrodynamic lubrication failure.

2. Oxidation inhibitor

Preserve oil from oxidized or deteriorate, allowing refrigeration oil to perform at peak level longer and extend oil life.

3. Corrosion inhibitor

Protect precision Compressor component from acid.

4. Surfactant agent

Reduce foaming and increase Cooling capacity (Foam slow the heat transfer process) Minimize residue Oil film thickness in condenser and evaporator Coils (act as insulator)

5. Conditioner

Maintain Elastomer resiliency and pliability from cracking (seal, valve, gasket, hose, pressure relief)

Frigi-Tech Application

- Air Conditioners
- Chillers
- Refrigerated Transport
- Freezer / Ice machines
- Heat Pump
- Automobiles

Frigi-Tech Treatment amount

Tonnage	Amount of Frigi-Tech
1- 10 tons	1 Ounce per ton (1 Oz = 29.57 ml.)
20 tons and greater	5% -10% of the Oil capacity of the Compressor

Recommendation

- 5% application for units 5 years younger and
- 10% application for units 10 years and older.

Frigi-Tech Treatment Times

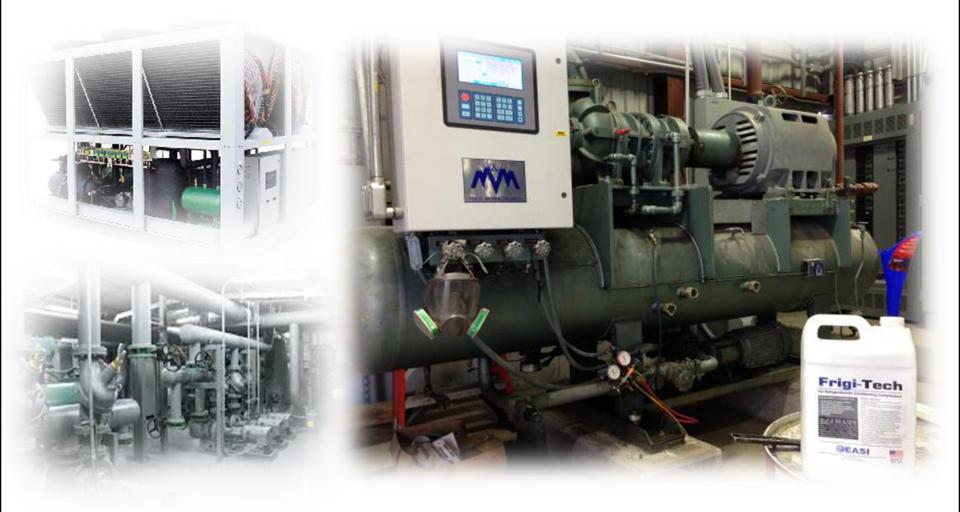
Frigi-Tech is a one-time treatment.

The only time additional Frigi-Tech is required is if and when a compressor is replaced or an oil change on a chiller.

DO WE VOID MANUFACTURER'S WARRANTY ?

FRIGI-TECH MEETS AND THEN EXCEEDS

After the introduction of **Frigi-Tech** there was over


1,000% improvement in the mixture lubricating ability.

The modified Falex test was used to determine lubricity.

Frigi-Tech exceeded the 582 pound limits of the test.

Frigi-Tech reference - Chiller application

32

Felda Biotech Center

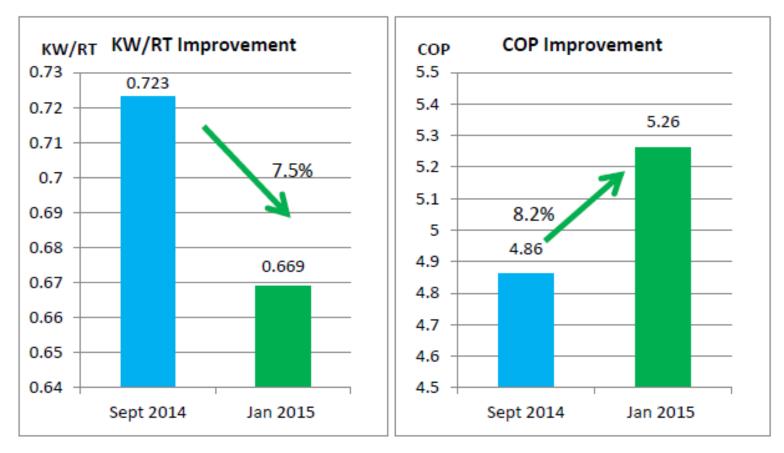
Ref : Centrifugal Chiller : York 250 Ton

Measured	Measured Points (Temp in Deg C)			Calculated Points						
Chilled Water	Chilled Water	Condenser Water	Condenser Water	Chilled Water	Condenser Water	Oe Chiller	Qc, Chiller		Chiller Heat	
Supply	Return	Supply	Return	Flow	Flow	Heat Gain,	Heat		Balance	Chiller
(Deg C)	(Deg C)	(Deg C)	(Deg C)	(Usgpm)	(Usgpm)	kW	Reject, kW	Chiller kW	Check	KW/RT
6.678	9.489	29.781	32.625	766.792	892.380	567.178	671.068	111.407	-0.011	0.781
6.795	9.806	29.971	33.010	768.636	892.461	609.818	716.828	114.317	-0.012	0.746
6.765	9.768	29.364	32.474	759.706	893.586	601.449	734.010	114.806	-1.262	0.697
6.716	9.657	29.025	32.024	754.211	889.067	586.497	705.080	111.479	0.015	0.723
6.740	9.692	29.132	32.131	752.936	908.182	587.526	719.940	113.606	0.028	0.741
6.833	10.013	29.261	32.455	753.235	908.949	633.195	767.459	116.839	0.022	0.650
6.754	9.737	29.422	32.453	759.253	897.437	597.610	719.064	113.742	-0.203	0.723

B	ef	0	r	e
B	ef	0	r	e

kw/RT	=	0.723
-------	---	-------

COP = 4.86

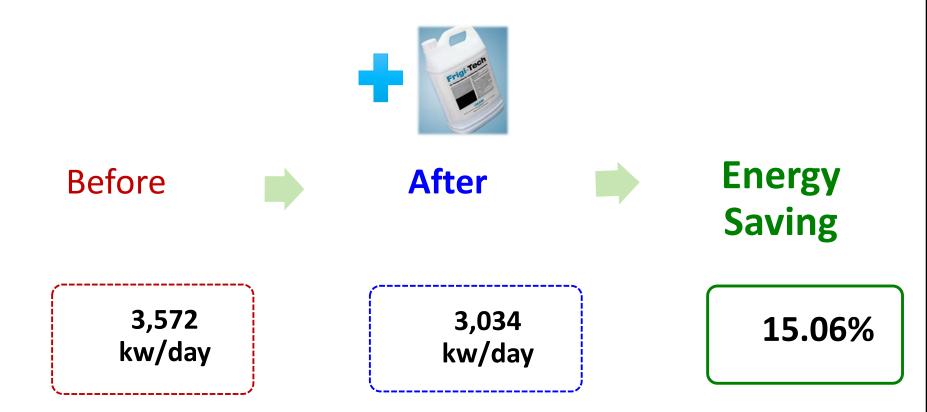

Measure	d Points (Te	emp in Deg O	:)			Calculated	Points				
Chilled	Chilled	Condense	Condense	Chilled					Chiller		
Water	Water	r Water	r Water	Water	Condenser	Qe, Chiller	Qc, Chiller		Heat		
Supply	Return	Supply	Return	Flow	Water Flow	Heat Gain,	Heat		Balance	Chiller	
(Deg C)	(Deg C)	(Deg C)	(Deg C)	(Usgpm)	(Usgpm)	kW	Reject, kW	Chiller kW	Check	KW/RT	
6.644	9.509	29.093	31.790	797.944	1038.355	604.299	740.294	109.072	0.036	0.637	kw
7.094	10.016	28.763	31.499	798.090	1039.308	616.526	751.779	117.239	0.022	0.676	
6.649	9.086	28.657	30.961	756.076	910.981	486.934	554.994	95.977	-0.051	0.732	CC
6.672	9.419	28.882	31.443	798.282	1038.484	579.833	703.086	104.053	0.027	0.632	
6.765	9.508	28.849	31.423	787.598	1006.782	571.898	687.538	106.585	0.008	0.669	

<u>After</u>

xw/RT = 0.669COP = 5.26

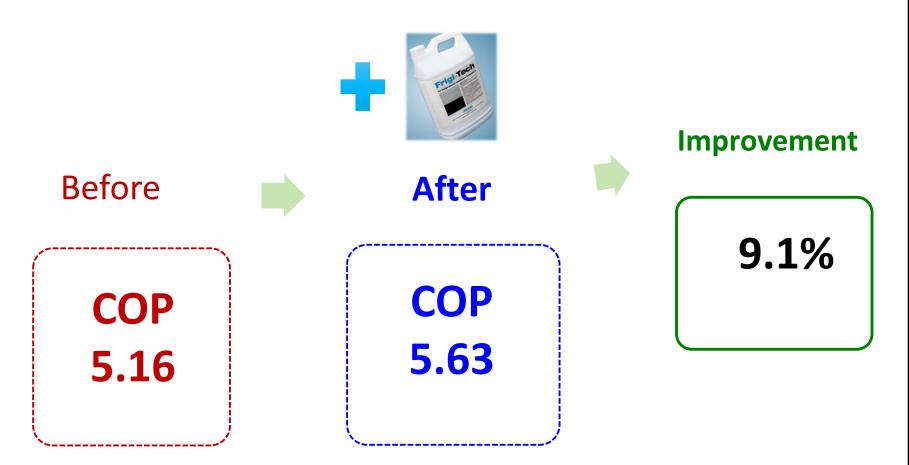
Felda Biotech Center

Ref : Centrifugal Chiller : York 250 Ton



Kw/RT for the treated Chiller is lower by 7.5%

COP improved by 8.2%



Ref : Chiller Centrifugal : York 600 tons

Ref :Chiller Centrifugal : 500 tons water cooled

HKU Central Plant

Parameter measurement :

Power, Cooling capacity, Condensing water in/out temp., Ambient temp.

Ref : Chiller Centrifugal : Trane 1,250 Tons

The average of the data collected:				
	Baseline	Frigi-Tech	Change	%
Chilled Water Supply Temperature	37.00	36.96	04	11%
Chilled Water Return Temperature	45.71	45.09	62	-1.36%
Condenser Water Supply Temperature	77.81	76.73	-1.08	-1.39%
Condenser Water Return Temperature	83.55	81.87	-1.68	-2.01%
Evaporator Refrigerant Temperature	31.61	32.62	1.01	3.20%
Pneumatic Acuator Pressure (PSI)	10.63	9.87	76	-7.15%
Tons Produced	583.04	544.13	-38.91	-6.67%
Kilowatts per Ton	.962	.928	034	-3.53%
Kilowatts Demand	561.17	505.40	- 55. 77	11%
Accumulators:				
Kiliton Hours	210.15	198.88	-11.27	-5.36%
Megawatt hours	179.10	160.30	-18.80	-10.50%
BTU per Watt	14.00	14.88	.88	6.29%

Ref : Chiller Water cooled : Trane 80 tons

Before Phase 2 Phase 1 Phase 3 Avg: 140 amps 145 140 135 amps amps amps After Phase 1 Phase 1 Phase 1 Avg: 124.67 amps 128 124 122 amps amps amps

% Saving in Amps : 10.95 %

Ref : Chiller air cooled : York reciprocating compressor

Parameters	Before	After Frigi-Tech treated	Avg. diff %
Compressor input power, kw (a)	60.3	55.07	9.49 % Saving
Cooling Capacity, kw (b)	115	216.5	46.6% Improved
EER Cooling (b/a)	1.91	3.92	105.3% Improved
CHW Flow, ⁰C	11.34	12.19	23.9% decreased
CHW Return, ⁰C	13.24	8.62	7.9% decreased
ΔΤ	1.9	3.57	
Ambient temp. ⁰ C	17.43	18.2	3.2% increase

Ref : Chiller : 7500 W Scroll Air Cooled

Parameters	Parameters Before After Frigi-Tech treat		Avg. diff %
Total Power of A/C (W)	3120	3020	11.4% Saving
Aux Evaporator capacity (kcal/hr)	5,658.10	6,089.00	11.4% Improved
СОР	2.11	2.35	11.4% Improved

Ref : Chiller : 190 Ton (Screw Compressor)

Parameters	Before (Apr 10)	After (Apr 24)	Result
Cooling capacity in kw	382.9	452.5	18% improved
СОР	3.6	4.13	15% improved
Kw/ton	0.975	0.85	12% Saving

@ Ambient temp : $28.3 \, {}^{\circ}C$ with Condensor kw = 106.2

<u>Re-test on May 14</u> (Ambient temp increase 5 $^{\circ}$ C) As per Asia Energy efficient norms : 0.55 $^{\circ}$ C increase power consumption by 3% (impact 27%) Compensate COP = 382.9 / (106.2 + 27%) = 2.84 Compensate kw/ton = (106.2 + 27%) / 111 = 1.21

Parameters	Before	Re-test (May 14)	Result
Cooling capacity in kw	382.9	441.6	15% improved
СОР	2.84	3.46	22% improved
Kw/ton	1.21	1.10	16% Saving

@ Ambient temp : 33.3 ^oC

Ref : Chiller : 150 tons

Chiller # 1

C	nil	ler	#	2
			••	

Testing	amps		Avg amps		
Before	274	266	263	267.6	
After	223	213	213	215.3	
		19.1 %			

Testing	amps			Avg amps	
Before	285	276	277	279.3	
After	212	205	204	207.0	
	Energy Saving in amps				$25.8 \ \%$

Ref : Chiller Air Cooled : Trane 100 tons , dual compressor

Application : Building 50,000 ft²

Parameters	Before	After	Result			
Kw/day	2,103.15	1,806.20	14.1% Saving			
Chiller capacity	81.25	93.75	15.38 % improved			
Compressor 14% less work, will have a much longer service life						

Frigi-Tech reference – Air Conditioner

CB A Richard Ellis

Ref : A/C : Trane 5 tons Roof Top

Before	After Frigi-Tech treated	Avg. diff %
28.3	27.7	same condition
15.67	13.57	13.4% Saving
245	210	14.29% decreased
72	65	9.72% decreased
15.27	13.61	1.66 °C lower
57.22	51.66	5.56 °C lower
5.92	5.13	13.34% Saving
1.18	0.93	21.18 % Saving
5	5.54	10.8 % improved
	28.3 15.67 245 72 15.27 57.22 5.92 1.18	Before Frigi-Tech treated 28.3 27.7 15.67 13.57 245 210 72 65 15.27 13.61 57.22 51.66 5.92 5.13 1.18 0.93

CAMERON

Ref : A/C 40 Tons

Tested duration :

- Pre-test (Before) 1 week
- Post test (After) 1 week after treatment of Frigi-Tech

Parameters	Before	After	Result			
kwH	158.3	148.55	6.1% Saving			
THI = Temperature ar = (0.55 x Amb. Te	nd Humidity index emp.) + (0.2 x dew point	:) + 17.5				
THI	77.45	77.44	5.88% improved			
Cooling index (kwH/THI)	2.04	1.92	5.88% improved			
Payback 9.3 months						

Ref : A/C : York 4 tons Split system for Convention Center

York 4 Ton Split Systems		Unit # F	-3 #84			Unit P	3 #32	
101 Convention Center - The Plaza	Before	After	ΔΤ	%Δ	Before	After	ΔΤ	%∆
Measurements & Readings	July 19th	July 29th			July 19th	July 29th		1
Ambient Temperature (°F)	121	123	2.0	1.7%	120	120.1	0.1	0.1%
Suction Pressure (PSIG)	78	74	(4.0)	-5.1%	64	57	(7.0)	-10.9%
Suction Line Temperature (°F)	52.7	52.9	0.2	0.4%	85.9	75.2	(10.7)	-12.5%
Evaporator Coil Temp (°F) (P/T Chart)	46	44	(2.0)	-4.3%	37	32	(5.0)	-13.5%
Discharge Pressure (PSIG)	360	335	(25.0)	-6.9%	355	310	(45.0)	-12.7%
Liquid Line Temperature (°F)	123.3	116.5	(6.8)	-5.5%	121.5	120.1	(1.4)	-1.2%
Condenser Temperature (P/T Chart)	144	139	(5.0)	-3.5%	143	127	(16.0)	-11.2%
Condenser Intake Air (°F)	120.1	119.3	(0.8)	-0.7%	123.3	112	(11.3)	-9.2%
Condenser Discharge Air (°F)	138	138	0.0	0.0%	150.1	130	(20.1)	-13.4%

Results

- 1. Suction pressure dropped
- 2. Evaporator Coil temperatue lower
- 3. Head (Discharge pressure dropped
- 4. Temperature in Condensor coil lower

Advantage

- 1. Colder temperature in Evaporator coils
- 2. Providing colder air into space, make happier Unit cycle off more saving Energy consumption
- Increased efficiency in the Condensor (do not work as hard to subcool the refrigerant)
- 4. Extends lives of the Compressor

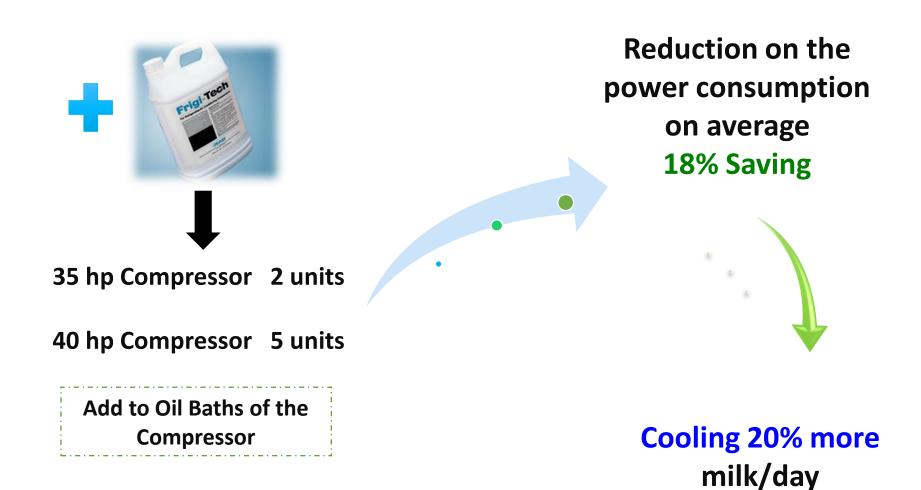
Ref : A/C : Goodman 10 SEERS

2 Goodman A/C 10 SEERS units approximated 6 years old.

The FRIGI-TECH oil was charged prior under "SUPERHEAD" conditions

	Before	After			
Delta T ⁰ F	20.1	26.9			
6.8 ⁰ F Cooling increased					

Positively impacted the ratio of run-time/off-time as well.



Frigi-Tech reference – Freezer

Ref : Ice Water Compressor

Ref: 50 ton Mycom Freezer (Ammonia System)

- 10 psi dropped in the High Side
- 5 psi dropped on the Low side
- Freezer temperature dropped 7 degree within 1 week
- Amperage draw was down 8%

- A reduced load in units
- Run constantly to deliver the coldest freezer room temperature

Energy Saving

Ref : Ice Machine

- Delivered Ice cubes from 67 dumps/day to 878 dumps/day
- Production increased 16%

Ref : Trenton Refrigeration Units

- With Frigi-Tech
- ✓ kw decrease 13% ✓ Compressor run time decrease 25% √ ΔΤ 16% decrease

With EasiLiner

\checkmark	Power factor	increase	26%
\checkmark	kw total	decrease	16%
\checkmark	Compressor run time	decrease	31%
\checkmark	ΔΤ	decrease	21%

Colorado Meat Packers, Inc.

EasiLiner[™] Reactive Power

Correction System

ACHSO (Thailand) CO.,LTD.

474 Soi Suksawad 35, Suksawad Road, Ratburana

Bangkok 10140

Contact : SURASAK S.

E-mail : project_achsoth@hotmail.com

Tel : (089) 6688699 Fax : (02) 8181203

Line : eco2017

